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Abstract
The neutron double-differential cross-section of molecular hydrogen at low
density has been measured at two rather low scattering angles and different
final neutron energies by means of three-axis spectrometry. This first inelastic
scattering determination of the single-particle roto-translational dynamics of
room temperature H2 allows for a detailed test of the theoretical modelling of
the spectral line-shapes of such a fundamental molecule,performed by referring
both to a careful quantum-mechanical treatment and to a simpler semi-classical
approximation. A comprehensive report on the neutron measurements and data
analysis is presented, along with an overview of the theories used for comparison
with the experimental results. An encouraging picture of the present capabilities
in the calculation of the true dynamic response of hydrogen gas to slow
and thermal neutrons is obtained, opening new perspectives for accurate data
calibration in inelastic neutron spectroscopy, with special relevance for small-
angle experiments.

1. Introduction

Neutrons provide the rare possibility of probing directly the single-particle dynamic properties
of fluids over a wide kinematic range,extending from the hydrodynamic regime (self-diffusion)
to the kinetic one (free motion) [1]. This special capability originates from the double
nature, coherent and incoherent, of the neutron scattering length for each isotope in the
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periodic system [2]. Atoms and molecules with predominantly incoherent neutron cross-
sections constitute ideal samples for self-dynamics investigations by neutron spectroscopy.
Indeed, the incoherent neutron scattering, as a function of the momentum h̄ Q and energy
h̄ω exchanged between the probe and the sample, gives direct access to the self-dynamic
structure factor Sself(Q, ω), i.e. the sought-for quantity when single-particle properties are
addressed. Conversely, other spectroscopic techniques, including coherent neutron scattering,
can only determine the total dynamic structure factor S(Q, ω), which, being related to the sum
of distinct-particle and single-particle space and time correlations, gives information on the
collective dynamics.

Hydrogen is a strongly incoherent neutron scatterer. In this respect, all hydrogen-
containing compounds are ideal systems for self-dynamics studies, as proved for example by
the increasing applications of the incoherent neutron scattering technique to biological systems,
where the abundance of H atoms allows an efficient study of the close connection between
molecular dynamics and biological functionality. As regards pure molecular hydrogen, many
studies have been devoted, from the early 1940s to current times, to the theoretical modelling
of the dynamic response to neutrons of this system [2–15], which is fundamental not only
from a scientific point of view, but also for applications in neutron technology, hydrogen being
an efficient moderator and cold neutron source at liquid densities. The case of hydrogen is
however partly anomalous with respect to those of other important simple molecular fluids
such as methane, since the considerable amount of theoretical work was not equally supported
by inelastic neutron scattering experiments. Indeed, existing dynamical measurements have
been concentrated on the liquid and dense gaseous phases, concerning in particular deep
inelastic neutron scattering (DINS) for mean kinetic energy and momentum distribution
determinations in the impulse approximation [16–20]. However, most models for the neutron
double-differential cross-section of H2 [2–14], including the detailed quantum-mechanical
description proposed by Young and Koppel (YK) [8, 9], are based on the typical assumption
of ideal gas behaviour for the translational dynamics, and on other basic approximations,
like the neglect of intramolecular roto-vibrational coupling, and the assumption of harmonic
vibrations. Thus, available models have been developed to be a good approximation, generally,
in the dilute phase and below the epithermal energies typical of DINS, which, while allowing
for the free-translation hypothesis even for a dense liquid, prevent testing the above original
schemes because of the anharmonicity of vibrations and roto-vibrational coupling induced by
the incident neutrons.

To our knowledge, the only case in which a hydrogen model (YK) has been compared
with inelastic scattering data collected in more appropriate conditions for model testing is the
one reported by Herwig and Simmons [21], where measurements on cold (18 K) hydrogen
vapour in equilibrium with the liquid were performed by using a fixed incident energy of
504 meV and scattering angles above 18◦. There, however, only the relative intensities of
individual rotational lines contributing to the spectrum were derived through a fit to the data
and compared with the corresponding YK predictions; thus only indirect, and somewhat
approximate, indications of the ability of the model to reproduce the total experimental
spectrum of hydrogen were obtained. Moreover, (i) due to the low temperature, only few
rotational levels were thermally populated; and (ii) the low-energy, low-angle part of the
kinematic range, which is quite interesting for the reasons explained below, was not probed in
that experiment.

Therefore, calculations of the dynamic cross-section of hydrogen have never been
thoroughly tested against inelastic measurements performed in the ideal conditions for which
most models have been developed, i.e. in the low-density room temperature gaseous phase
and well below the extreme kinematic conditions of DINS. Only indirect (integral) tests have
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been performed in past years for room temperature hydrogen by comparison of calculations
with total neutron cross-section data [22], and with differential cross-section results (dσ/d�)

obtained by slow-neutron diffraction on dilute H2 [13]. As a matter of fact, we neither know
how the accuracy of the proposed dynamical models varies with decreasing neutron energy and
scattering angle nor have indications about their reliability when several rotational transitions
contribute not only to the (neutron) energy-loss part, but also to the energy-gain part of the
spectrum. Without this basic knowledge, it is also impossible to evaluate the efficacy of
related ‘modified’ models later introduced for the double-differential cross-section in more
complex cases, like those of applicative interest concerning low-temperature liquid hydrogen
and its dynamic response to high-energy neutrons (e.g. above 0.5 eV). For instance, in these
latter cases corrections of the original schemes were reasonably introduced to account for
centrifugal distortion, anharmonicity of vibrations and quantum effects [16] making the mean
translational kinetic energy differ from the classical value of 3

2 kBT , or, finally, to improve
the description of the translational dynamics for a dense liquid [14, 23], which, except in
the impulse approximation, greatly differs from the ideal gas one assumed in all the earlier
theoretical works [4–10]. It is worth noting that later improvements and modifications have
often been applied to essentially one original model, i.e. the quantum YK one. However, since
this model still requires a detailed experimental verification in its original form, it is even more
the case that no real conclusion can be drawn, in principle, about the accuracy of its extensions
and modifications.

Here we present the results of an inelastic scattering determination of the self-dynamic
cross-section of dilute room temperature H2, at two different final neutron energies, namely
14.68 and 50 meV. The present capabilities in the ab initio calculation of the hydrogen
neutron spectra, including a detailed quantum treatment of the roto-vibrational single-molecule
dynamics, are probed over a rather extended energy transfer range, where different sets of
rotational transitions can be activated by the incident neutrons. In particular, the calculations are
tested against experiment both below and above the threshold energy (14.7 meV) for activation
of the first rotational transition in hydrogen, since variable incident neutron energies were used
in the measurements (see the experimental details in section 4), from rather low values such as
10.7 meV, up to 59.5 meV. Moreover, rather low scattering angles, 2◦ and 7◦, were investigated
to enable an experimental verification of the calculations in the most demanding conditions,
i.e. where the ideal gas law, used to model the translations of the molecules, foresees a steep
decrease of the width of the translational spectrum [14]. The case of scattering angles below
30◦ is, for instance, the one giving rise to the most evident differences between experimental
data and model calculations of the neutron double-differential cross-section of gaseous
methane [2, 13, 24–26], and represents a stringent test to be performed for hydrogen as well.

Producing first experimental results for the neutron inelastic spectra of gaseous hydrogen
at room temperature, and comparing them with available, refined theoretical descriptions, has
indeed a fundamental interest. It is important, however, to note that, if data and calculations
agree at a high level of accuracy, one obtains a tested and valuable method for inelastic scattering
data normalization, using hydrogen as a reference sample for deriving the conversion factor
between experimental (arbitrary) and absolute units for any other sample measured with the
same instrumental set-up. In this respect, encouraging results have been obtained, though at
the less demanding level of integrated spectra, in the normalization of differential cross-section
data obtained by means of neutron diffraction [13, 27].

In order to evaluate the importance of using room temperature H2 gas for normalization
purposes, it should be borne in mind that:

(i) The widespread use of vanadium as a neutron reference sample may sometimes become
rather problematic and imprecise, due to the increasing and unpredictable spurious signal
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from this sample as smaller and smaller Q values are approached, which is generally due
to impurities and residual stresses induced by manufacturing.

(ii) The availability of a gaseous standard is an important advantage in experiments on
fluids, since identical sample–container geometries can generally be maintained in all
measurements, both for the system under study and the reference sample, thus allowing
for a more accurate data reduction to absolute units.

(iii) The use of room temperature makes the hydrogen sample preparation extremely easy, with
little ancillary equipment required and low gas consumption.

(iv) In comparison with dilute CH4 [28], another predominantly incoherent neutron scatterer
for which quantum-mechanical models of the self-double-differential cross-section have
been developed and refined during recent years [13, 26], hydrogen has the advantage that
thermal and hot neutrons excite far fewer rotational transitions and no vibrational ones, so
models and numerical calculations are more easily, and to a better accuracy, implemented.

Moreover, the above-mentioned difficulties in reproducing with accuracy the CH4 neutron
spectra at scattering angles below 30◦ make methane unsuited, at least with the present
modelling tools, for normalization at low angles and, consequently, for avoiding the low-
Q inaccuracies found with vanadium. Thus, the hydrogen method, although of general
application irrespectively of the type and geometry of the neutron spectrometer used, would
be particularly valuable for small-angle inelastic instruments, like the novel neutron Brillouin
spectrometer BRISP at the Institut Laue-Langevin in Grenoble [29].

We stress, however, that the foreseen use of hydrogen as a calibration standard can only
be proposed after having demonstrated that the available methods for calculating H2 inelastic
neutron spectra enable a good description of the experimental results. It is the purpose of this
work to show that such is indeed the case, provided that the quantum nature and contribution to
scattering of individual rotational states are duly taken into account,as is done by the YK model.
We will also show that a simpler quasi-classical treatment such as the one proposed by Krieger
and Nelkin (KN) [7], though able to approximately account for the observed dynamics, cannot
fully reproduce, as partly expected from its intrinsic limitations, slow-neutron and thermal
neutron experimental spectra over energy transfer domains as important as the elastic and
quasi-elastic ones.

The contents of this paper are organized as follows. Sections 2 and 3 summarize the
theoretical background by reporting, respectively, basic relations for neutron scattering and
the main features of the models adopted for the description of the hydrogen neutron spectra.
In section 4 the experiment is described in some detail, while section 5 is devoted to data
treatment. The results and conclusions of this investigation are finally discussed in section 6.

2. Basic theory

In the following we first refer to the simpler case of monatomic samples in order to allow
for a smoother understanding of the fundamental concepts at the basis of neutron inelastic
scattering investigations of fluid dynamics. These concepts will then be extended to the case
of molecular systems in the next section.

The dynamical quantity accessed by inelastic neutron scattering on a monatomic sample
composed of N nuclei with time-dependent position vectors R1(t) . . .RN (t) is the double-
differential cross-section per unit solid angle and unit frequency interval [2]:

d2σ

d� dω
= k1

k0

1

2π

∫
dt e−iωt 1

N

N∑
α,β=1

〈b∗
αe−iQ·Rα(0)bβeiQ·Rβ(t)〉 = k1

k0
S̃(Q, ω), (1)
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which is proportional to the probability per unit time of any energy-conserving scattering
process where the neutron wavevector undergoes the transition k0 → k1, corresponding to a
momentum transfer h̄Q = h̄(k0 − k1). In equation (1), the fingerprints of the probe that we
are using for the investigation of the system dynamics are represented by the ratio k1/k0 of the
final and incident neutron wavevectors, and by the nuclear neutron scattering lengths bi , which
depend on the total spin of the neutron plus i th nucleus system. Further, we indicated the time
Fourier transform in equation (1) as S̃(Q, ω) in order to underline its close relation with the
relevant dynamical quantity in the theory of fluids, i.e. the dynamic structure factor S(Q, ω).
The latter, defined as the time Fourier transform of the intermediate scattering function (ISF)
F(Q, t) measuring the global density correlation, in the reciprocal space, between couples of
atoms at different times [1, 30], is in fact given by

S(Q, ω) = 1

2π

∫
dt e−iωt F(Q, t) with F(Q, t) = 1

N

N∑
α,β=1

〈e−iQ·Rα(0)eiQ·Rβ(t)〉 (2)

where we used the explicit expression
∑N

i=1 eiQ·Ri (t) for the space Fourier transform of the
time-dependent local density ρ(r, t) = ∑N

i=1 δ(r −Ri(t)), and the brackets 〈· · ·〉 indicate the
statistical average in the canonical ensemble.

The comparison of equations (1) and (2) shows that S̃(Q, ω), as obtained from neutron
scattering, would be strictly proportional to the dynamic structure factor S(Q, ω) if the neutron
scattering lengths in equation (1) were identical for all the nuclei in the system. Before
deepening this last aspect, it is useful to note that in equation (2) no distinction was made
between correlations involving different atoms and those relating the position of the same atom
at different times. If such a distinction is made, it is possible to define self -ISF (α = β) and
distinct ISF (α �= β) [1, 30], Fs(Q, t) and Fd(Q, t), and, consequently, analogous contributions
to the dynamic structure factor, such that S(Q, ω) = Ss(Q, ω) + Sd(Q, ω). Such a separation
helps in clarifying the role of coherent and incoherent scattering in determinations of S̃(Q, ω)

by the neutron technique. Without going into details which can be deepened by referring
to the literature on neutron scattering, e.g. [2], whenever the spin variables (contained in the
scattering lengths) can be considered as uncorrelated with the nuclear coordinates, it is possible
to separate in equation (1) the correlation of the scattering lengths from that of the exponentials.
Such a decoupling is justified, in principle, only when dealing with a monoisotopic system and
an unpolarized neutron beam. In this case, by introducing the coherent and incoherent neutron
scattering lengths, bcoh and binc, as the average and spread of the b distribution originating
from the variable coupling between the neutron and nuclear spin orientations, and by using
the relation 〈b∗

αbβ〉 = b2
coh + δαβb2

inc, with δαβ the Kronecker’s symbol, it is possible to rewrite
S̃(Q, ω) in terms of self -contributions and distinct contributions, as

S̃(Q, ω) = 1

2π

∫
dt e−iωt [b2

coh Fd(Q, t) + (b2
coh + b2

inc)Fs(Q, t)]

= b2
coh Sd(Q, ω) + (b2

coh + b2
inc)Ss(Q, ω)

= [σcoh Sd(Q, ω) + (σcoh + σinc)Ss(Q, ω)]/4π (3)

where we also introduced the coherent and incoherent neutron scattering cross-sections,
σcoh = 4πb2

coh and σinc = 4πb2
inc, typically tabulated in units of barns (1 b = 10−24 cm2)

for each isotope of the periodic system. However, even when referring to monatomic samples,
one deals, in general, with a collection of various isotopes of the same element, and thus with
a collection of different scattering cross-sections. In this case, the values of σcoh and σinc to be
used are those taking into account the isotopic composition of the sample and its contribution
to the total incoherence. The first formulation given in equation (3) will be useful for the
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generalization to molecular systems. As regards the third expression, we note that it can be
equivalently written as

S̃(Q, ω) = σcoh

4π
S(Q, ω) +

σinc

4π
Ss(Q, ω) (4)

which clarifies how, as anticipated in the introduction, coherent neutron scattering probes
the total (collective) dynamics and incoherent neutron scattering gives direct access to the
single-particle dynamics (self-dynamics). For a very dilute gas, with negligible interparticle
interactions, the total dynamic structure factor reduces to the self-part only [2]; thus neutron
inelastic scattering allows us to determine

S̃(Q, ω) = σcoh + σinc

4π
Ss(Q, ω) (5)

where σs = σcoh + σinc is the total scattering cross-section and Ss(Q, ω) will be very close to
the well-known ideal gas (i.g.) scattering law [2]:

Si.g.
s (Q, ω) =

√
M

2πkBT Q2
exp

[
− M

2kBT Q2

(
ω − h̄Q2

2M

)2]
, (6)

with T the gas temperature and M the atomic mass.
It is finally useful to briefly discuss the connection between experimental intensities

collected in a neutron scattering experiment and the sought-for dynamic quantities. Even
in idealized conditions, i.e. with negligible neutron absorption by the nuclei and no occurrence
of multiple-scattering events in the sample, the measured signal d I/dω (here taken as the
count rate per unit frequency interval) differs from the double-differential cross-section of
equation (1) by an instrumental factor that depends on the neutron flux at the sample 	, the
solid angle element 
� subtended by the detector, the detector neutron absorption efficiency
ε(k1) and other instrument-dependent parameters. As a consequence, the following relation
holds:

d I

dω
= C

d2σ

d� dω
= C

k1

k0
S̃(Q, ω) (7)

where C ∝ 	
�ε(k1)N and, for a monatomic sample, S̃(Q, ω) is simply related to the fluid
dynamic properties through equation (4), and the knowledge of the numerical values of the
coherent and incoherent neutron cross-sections.

3. Models for the neutron double-differential cross-section of dilute H2

In order to generalize the previous concepts to the case of molecular systems, the first step
consists in taking a molecule as the basic unit for dynamical considerations. Thus we will
consider a system composed of N identical molecules, each composed of n nuclei. Equation (1)
can thus be generalized to the double-differential cross-section per molecule, as

d2σ

d� dω
= k1

k0

1

2π

∫
dt e−iωt 1

N

N∑
α,β=1

n∑
i, j=1

〈b∗
αi e

−iQ·Rαi (0)bβ j eiQ·Rβ j (t)〉 (8)

where Rβ j and bβ j are now the position vector and scattering length, respectively, of
the j th nucleus in the βth molecule. However, such a straightforward generalization,
involving a statistical and quantum average indicated by 〈· · ·〉, can be easily evaluated only
when the eigenvectors describing the global, i.e. vibro-roto-translational–spin, state of a
molecule form a complete set, and this condition is not fulfilled, in general, when quantum
effects related to the indistinguishability principle are important, as happens typically at low
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temperatures [2, 8–10, 13]. In fact, unless nuclei of the same element present in a molecule
can be treated as Boltzmann particles, the symmetry requirements for the total molecular
wavefunction generally impose a coupling between the total spin state and the roto-vibrational
state of the molecule. For homonuclear diatomic molecules such a coupling, often referred
to as ‘spin correlation’, translates into the impossibility of having states with total molecular
spin and rotational quantum numbers of different parity, and into the existence of two distinct
species for the molecular states, ortho-states and para-states, which follow different probability
distributions. A review of the detailed treatment for homonuclear diatomic molecules and the
proper generalization of the molecular neutron double-differential cross-section when spin
correlations are important, following the guidelines of the YK model, can be found in [13].
Here, the rather high temperature of the sample that we are interested in (room temperature
hydrogen) might allow us to assume negligible spin correlations, and to consider the simpler
case of Boltzmann particles [10, 13]. However, the uncorrelated-spin treatment is able to
predict the total neutron spectra of hydrogen at high temperature to a good approximation, but
cannot be used to investigate the details of the individual rotational transitions contributing
to the spectrum, which always require, instead, the full spin-correlated treatment and the
consideration of the ortho–para-composition of the diatomic fluid, whatever the temperature.
Therefore, we recall in the following the basic relations of the YK correlated-spin case, which
can be found under few simplifying assumptions, and address the reader to [13, section 3.1]
for further details.

The first basic assumption is that the hydrogen molecules of the system behave as free
vibro-rotors, which is certainly a more than reasonable hypothesis in the low-density case that
we are dealing with. This means that the relative orientations of the molecules (intermolecular
rotation coupling) and correlations between vibrational states of different molecules can
be neglected. Consequently, the translational centre-of-mass dynamics of the molecules is
assumed to be completely independent of the individual roto-vibrational and spin states. In
this hypothesis, and expressing the position vector Rβ j as the sum of the position vector Rβ

of the centre of mass (CM) of the βth molecule and the position vector rβ j of nucleus j with
respect to the CM, it is possible to show that the double-differential cross-section of a molecular
sample can be written as [13, equation (4)]

d2σ

d� dω
= 1

2π

k1

k0

∫
dt e−iωt [Fs(Q, t)v(Q, t) + Fd(Q, t)u(Q)] (9)

where both u(Q) and v(Q, t) are single-molecule functions, which globally represent the
‘molecular cross-sections’, and depend on the intramolecular roto-vibrational–spin dynamic
features. We note that the free-rotor assumption and the separation into self-molecule and
distinct-molecule contributions enable the introduction, as for monatomic systems, of the self-
ISF and distinct ISF, Fs(Q, t) and Fd(Q, t), which describe, in this case, the CM translational
dynamics of the molecules. Thus, in the molecular case with free rotations, S̃(Q, ω) is simply
given by

S̃(Q, ω) = 1

2π

∫
dt e−iωt [Fs(Q, t)v(Q, t) + Fd(Q, t)u(Q)] (10)

which, when compared with equation (3), shows a structure fully analogous to that in the
monatomic case, except that the coherent cross-section for the distinct term is now a function
of Q, u(Q), and the total scattering cross-section (coh + incoh) weighting the self-part is
replaced by a function of both Q and time, v(Q, t).

Explicit expressions for the molecular cross-sections, u(Q) and v(Q, t), of H2 can be
obtained by assuming negligible intramolecular vibration–rotation coupling and harmonic
vibrations. The diatomic gas is thus treated as a gas of freely rotating harmonic oscillators.
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The corresponding quantum-mechanical calculations can be carried out by using the single-
molecule roto-vibrational–spin product states (expressed in terms of the rotational, vibrational
and molecular spin quantum numbers) |w〉 = |J M〉|T M T 〉|υ〉, of energy Ew given by the sum
of the rotational and vibrational energies, Ew = [EJ + Evib] = [B J (J + 1) − D J 2(J + 1)2 +
h̄ωυ(υ + 1

2 )], with ωυ the frequency of the harmonic oscillator, B the rotational constant and
D the centrifugal distortion constant. As anticipated, due to the symmetry restrictions on the
molecular wavefunction of hydrogen, the product states |w〉 do not form a complete set, and
only those states where T and J appear with the same parity are admitted.

The quantum calculations finally yield for v(Q, t) [8–10, 12, 13]

v(Q, t) =
∑

J0 J1υ0υ1

eiωJ0 J1 t ei(υ1−υ0)ωυ t f (Q, J0, J1, υ0, υ1) (11)

where subscripts 0, 1 denote quantum numbers before and after the scattering event,
respectively, and ωJ0 J1 = (EJ1 − EJ0)/h̄ is the rotational transition frequency. We note that
excited vibrational states are unpopulated in hydrogen at room temperature; thus all molecules
lie initially in the vibrational ground state (υ0 = 0). As a consequence, the function f in
equation (11) no longer depends on υ0, and explicitly reads

f (Q, J0, J1, υ1) = s(J0 J1)x(J0) p(J0)
J0

α2υ1

4υ1!
(2J1 + 1)

J0+J1∑
l=|J0−J1|

C2(J1 J0l; 000)|Al,υ1 |2 (12)

where α = Q
√

h̄/(2Mωυ), M is the molecular mass, C is a Clebsch–Gordan coefficient,
Al,υ1 = ∫ 1

−1 dη ηυ1 e−α2η2/2eiβη Pl(η), with Pl the Legendre polynomial of order l, β = Q Req/2
and Req is the equilibrium internuclear distance of the hydrogen molecule in the ground
rotational state. Use of a J -dependent equilibrium distance, aimed at accounting for the
effects of centrifugal distortion on the internuclear separation, and roughly representable by
Reff

eq = h̄/
√

M[B − D J (J + 1)]/2, can be verified to give negligible differences from the
calculations using the constant ground-state value Req for all J . In equation (12), the subscripts
and superscripts in brackets mean that the quantities s, x and pJ0 vary with the parity of J0,
or with the parity combination of J0 and J1 (even–even, odd–odd, even–odd, odd–even). In
particular, the coefficients s contain the coherent and incoherent nuclear scattering lengths
of the hydrogen nucleus, and have different expressions depending on the above-mentioned
parity combinations. The explicit formulae can be found in [13, table 2], using I = 1/2 for
the nuclear spin. Similarly, the species concentrations x are determined by the parity of the
rotational levels [13, table 1], and at room temperature tend to the so-called ‘normal’ values,
which for hydrogen are xeven = xpara → 1/4 and xodd = xortho → 3/4. Finally, even and odd

rotational initial state probabilities, peven/odd
J0

, are found to contribute to equation (12), and,
along with the species concentrations, determine the different probabilities pertaining to the
ortho-molecular and para-molecular states. For instance, peven

J0
is given by

peven
J0

= (2J0 + 1) exp(−β EJ0)∑
J0even(2J0 + 1) exp(−β EJ0)

,

where the denominator can be identified with the even rotational partition function, Zeven.
As regards u(Q), calculations give, fortunately, a far simpler result [8–10, 12, 13]:

u(Q) = b2
coh A2

0,0. (13)

Since u(Q) is time independent, the distinct part in equation (10) reduces to S̃d(Q, ω) =
u(Q)Sd(Q, ω), which probes the centre-of-mass dynamics of the fluid arising from
correlations, ruled by the intermolecular interaction potential, between different molecules.
Purely coherent scattering characterizes u(Q) and,consequently, the distinct contribution to the
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total double-differential cross-section. As regards the single-molecule term in equation (10), it
is seen that the time dependence of v(Q, t) prevents one from deriving an explicit expression
in terms of the CM self-dynamic structure factor Ss(Q, ω) = 1

2π

∫
dt e−iωt Fs(Q, t). However,

time enters the expression for v(Q, t) in equation (11) only in complex exponential form; thus
it is possible to rewrite the self-part of equation (10) as

S̃s(Q, ω) =
∑

J0 J1υ1

f (Q, J0, J1, υ1)
1

2π

∫
dt e−i(ω−ωJ0 J1−υ1ωυ)t Fs(Q, t)

=
∑

J0 J1υ1

f (Q, J0, J1, υ1)Ss(Q, ω − ωJ0 J1 − υ1ωυ) (14)

which corresponds to a sum, over the possible transitions, of single-molecule contributions
in which the CM self-dynamic structure factor can effectively be factored out, but explicitly
depends, through a frequency shift, on the specific intramolecular transition.

Summarizing the information gathered so far by means of equations (10)–(14), the double-
differential cross-section of hydrogen can, according to the YK treatment, be modelled as

d2σ

d� dω
= k1

k0

[
b2

coh A2
0,0 Sd(Q, ω) +

∑
J0 J1υ1

f (Q, J0, J1, υ1)Ss(Q, ω − ωJ0 J1 − υ1ωυ)

]
(15)

with f given by equation (12). At extremely low densities, such as those investigated here
(n ∼ 0.15 nm−3), the distinct CM dynamic structure factor tends to vanish. Moreover, the
coherent scattering length of the hydrogen nucleus is negligible compared with the incoherent
one. The latter does not contribute to the distinct part, while it is contained in the f function
weighting the self-terms. Therefore, for dilute H2, the dynamic response to neutrons is
represented by a further simplified model, that is

d2σ

d� dω
= k1

k0
S̃s(Q, ω) = k1

k0

∑
J0 J1υ1

f (Q, J0, J1, υ1)Ss(Q, ω − ωJ0 J1 − υ1ωυ), (16)

which retains only the self-contributions to the dynamic structure, as expected for a nearly ideal
gas. Accordingly, a suitable representation of the centre-of-mass single-molecule dynamics
Ss is, in such conditions, the i.g. model of equation (6), with M replaced by the molecular
mass of H2. With these premises, equations (12), (14) and (16) can be quite straightforwardly
computed. The specific parameters and conditions for practical implementation in the present
case will be discussed in the following subsection.

No substantial alternatives to the rather detailed quantum method of YK are currently
available for predicting the hydrogen spectrum, unless stronger approximations are accepted
like the neglect of spin correlations [13, 14] and, further, of the detailed quantum structure
of rotational and vibrational levels [4–7]. Under such approximations, simpler expressions
for the double-differential cross-section can be obtained, such as the one derived by Krieger
and Nelkin [7] by exploiting the mass tensor concept previously introduced by Sachs and
Teller [4]. Skipping the quantum calculation of matrix elements involved in the average 〈· · ·〉
of equation (8), and performing classical thermal averaging over the molecular orientations,
the KN result is

d2σ

d� dω
= k1

k0

∑
i, j

ai j j0(Q|ri − r j |)e−γi j Q2
Si.g.(i)

s (Q, ω), (17)

where i and j run, as before, over the nuclei in the molecule, ri is the position vector of
nucleus i with respect to the CM, exp(−γi j Q2) is a Debye–Waller factor resulting from the
orientational average of the vibrational wavefunction, j0 is the zeroth-order spherical Bessel
function, ai j = bcoh,i bcoh, j + δi jb2

inc,i and the self-dynamic structure factor is the ideal gas one
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of equation (6) with M replaced by M (0)

i = 3/ Tr M−1
i , the latter being the inverse mass tensor

for the i th nucleus. According to Sachs and Teller, for hydrogen Tr M−1
i = (1 + 1 + 1/2)/mH,

we thus have M (0)

i = 1.2mH, where mH is the mass of the proton. Equation (17) can indeed be
easily calculated; however, it is expected to give a reasonable description of neutron spectra
when the incident neutron energy is large compared to the spacing of the rotational states, and
when many of these levels are thermally excited.

3.1. Numerical calculation of S̃(Q, ω) for H2 at low density

The fundamental parameters ruling the developmentof the YK calculations are the temperature
T of the fluid and the incident neutron energy E0. The former determines the initial roto-
vibrational state of the sample; the latter defines the possible intramolecular transitions. As
mentioned, at room temperature, excited vibrational levels of H2 are unpopulated; thus the
initial value υ0 of the vibrational quantum number is zero, and the occupation probability of
the ground vibrational state is unity for all the molecules in the gas. As a second step, the energy
of transition towards excited vibrational states has to be compared with the incident neutron
energy E0, in order to establish whether vibrational transitions can or cannot be induced by the
scattering process. Neutrons are unable to excite molecular vibrations in hydrogen if neutron
energies below h̄ωυ = 515.9 meV [31] are used, as in the case of the present experiment, where
incident energies below 60 meV were employed. Therefore, calculations were performed by
also taking υ1 = 0 in all the above formulae.

Similar comparisons must be carried out for rotations. In particular, once the even and
odd rotational partition functions have been calculated at the given temperature, the initial
ortho–para-probabilities xeven/odd peven/odd

J0
(see equation (12)) must be analysed in order to

decide how many rotational states are thermally populated at a significant level. In the present
paper, calculations were typically performed for J0 = 0, 1, . . . , J0 max, with J0 max such that
xeven/odd peven/odd

J0 max ∼ 10−6. Calculation of the above probability shows that, for hydrogen at
room temperature, eight rotational levels (J0 = 0, . . . , 7) are significantly populated.

For each J0 taken into consideration, one has then to determine the possible final states, J1.
If the neutron energy is so low that no transition towards higher rotational levels is allowed,
then J1 will vary between 0 and J0 (i.e. only anti-Stokes transitions can occur); otherwise,
the incident energy value (which is variable in inverse geometry experiments) is used to
establish the maximum J1 that can be reached, starting from a given J0. For each E0 of
the experiment, all those final levels satisfying the condition EJ0 J1 = EJ1 − EJ0 � E0 + 


must be considered, and J1 will vary, for each J0, between 0 and J1 max(J0) (i.e. Stokes and
anti-Stokes transitions take place). Above, 
 represents a suitable energy able to account for
the non-zero width of rotational lines. For instance, one can take 
 ≈ 3h̄Qel max(kBT/M)1/2,
with h̄Qel max = 2h̄k0 = 2(2m E0)

1/2, i.e. three times an approximate estimate of the maximum
width of the ideal gas spectrum.

When computing inelastic spectra, one has of course to calculate the double-differential
cross-section for each (Q, ω) couple probed by the experiment. Consequently, since the energy
transfer is defined by E = h̄ω = E0−E1, with E1 the final neutron energy,and since Q depends
on both ω and the scattering angle θ , through Q = k0[2 − ω/ω0 − 2(1 − ω/ω0)

1/2 cos θ]1/2,
the above evaluations for the admitted rotational transitions and the consequent calculation
of equations (12) and (16) must be repeated for each triplet (E0, E1, θ ) contributing to the
measured spectrum.

Details concerning the numerical calculation of the Clebsch–Gordan coefficients, the
integrals Al,υ1, the Legendre polynomials etc can be found in [13]. The hydrogen parameters
used in the present computations are given in table 1. As an example, figures 1 and 2 show a
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Figure 1. Contribution of the main rotational lines to the total neutron spectrum of hydrogen at
room temperature, for fixed final energy neutrons of 14.68 meV and fixed scattering angle θ = 2◦ .
The transition from the initial to the final state, J0 → J1, is indicated for each line. A negligible
contribution comes from elastic scattering involving even levels, due to the small coherent cross-
section weighting such terms.

Table 1. Rotational constants, equilibrium distance and fundamental oscillator energy of the
hydrogen molecule [31] used in the present calculations.

H2

B (meV) 7.355
D (meV) 0.005 7
Req (Å) 0.741 44
h̄ωυ (meV) 515.92

zoom of the total S̃s for room temperature H2 at two different final neutron energies, along with
the individual contributions of the rotational lines due to the most relevant J0 → J1 transitions.
The line contribution to the total S̃s spectrum depends on the initial ortho-probabilities (J0 odd)
or para-probabilities (J0 even) and, mainly, on the very different cross-section terms (see [13],
table 2) pertaining to the various transitions. In particular, all transitions involving at least one
odd level depend on the huge incoherent cross-section of the hydrogen nucleus, while those
between even states are weighted only by the small coherent cross-section. This explains why
in figures 1 and 2 elastic neutron scattering leaving the molecule in an odd state dominates
over elastic events involving a molecule in an even rotational level.

4. Experimental details

The experimental spectra from gaseous hydrogen have been collected with the three-axis
neutron spectrometer IN3 at the High-Flux Reactor of the Institut Laue-Langevin in Grenoble.
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Figure 2. As figure 1, but for fixed final energy neutrons of 50 meV.

The experiment was performed by employing the Cu(111) monochromator, and two different
analyser set-ups, namely Cu(111) and PG(002), for fixed final energy scans at E1 = 50 and
14.68 meV, respectively. In the second set-up, a neutron filter could be used in the scattered
beam to suppress the higher-order harmonics from the analyser. Quite relaxed collimations,
(40′, 40′, 60′) from the monochromator to the detector, could be employed in both cases, due
to the broad features of the hydrogen spectrum which do not require extreme instrumental
performances in terms of energy resolution. All energy scans were carried out in a constant-θ
configuration, which, as will be clear in the following, is particularly suited to the purpose
of testing the normalization method discussed in the introduction. At both final energies
investigated, spectra were recorded, in particular, for two scattering angles, namely θ = 2◦
and 7◦. A schematic drawing of the instrument set-up and operation mode adopted is shown
in figure 3.

The use of the inverse geometry configuration, i.e. where variation of the energy transfer
E is obtained by changing the incident energy E0 at fixed final energy E1, requires one to scan
the Bragg angle at the monochromator, θM, while the Bragg angle at the analyser, θA, is kept
constant. In the set-up adopted the scattering angle θ was also fixed, at either 2◦ or 7◦; thus the
geometrical configuration of the instrument downstream from the monochromator, surrounded
by a rectangle in figure 3, was the same for each energy transfer value investigated in the runs,
and was simply rotated, as a whole, around the vertical axis at the monochromator, in order to
allow the different reflections selected by changing θM to be followed.

The constant-θ mode can be an advantage when one wants to avoid even minimum
variations of the collected intensities merely due to geometrical effects from one energy point
to another in the same scan. Indeed, the way in which the analyser–detector arm ‘sees’
the sample, during the energy scan, is always the same if θ is constant, independently of
the sample shape. A direct consequence of the invariance of the geometrical configuration
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2

2

Figure 3. Three-axis spectrometer configuration employed for the neutron measurements on H2.
The Bragg angles at the monochromator and analyser are indicated, as well as the scattering angle θ

and the dimensions of the rectangular diaphragms, before and after the sample, for the definition of
the incident and scattered beam. Collimation angles are also shown for each arm of the spectrometer.
The inverse geometry operation adopted at constant θ implies that changes in the energy transfer E
are obtained by changing θM, while both θ and θA remain unchanged throughout the whole energy
scan. A decrease of θM gives access to higher energy transfers. In the constant-θ mode, the whole
part of the spectrometer surrounded by the dotted rectangle is rotated, rigidly, around the vertical
axis, normal to the plane of the figure, at the centre of the monochromator.

coupling the position and orientation of the analyser with the shape and size of the sample
is that solid angle effects do not, in principle, affect the measured spectra. Thus, within an
energy scan, the (effective) solid angle term 
�, introduced at the end of section 2, does not
contribute, ultimately, to variations of the normalization factor C in the general equation (7).
Similarly, the detector efficiency, which depends on the energy of the scattered neutrons, gives
a constant contribution to C when the inverse geometry operation of the spectrometer is used,
and, more important, the efficiency of the analyser crystal is also kept constant. Conversely,
due to the energy dependence of both the flux from the neutron guide and the monochromator
crystal reflectivity, the flux 	 at the sample is a function of E0. This fact, together with
the 1/k0 variation in equation (7), apparently prevents one from deriving the accurate energy
dependence of the absolute scattering efficiency of the sample, i.e. the true scattering law
S̃(Q, ω), determined by the system response to a constant flux of neutrons. However, the use
of a neutron monitor in the incident beam (see figure 3) allows one to adjust the counting time
per energy point of a spectrum in such a way as to compensate the intensity variations with
E0. In fact, the monitor counts Mc recorded, for a given E0, in a time τ , are proportional to
	0τηmon, with the incident flux at the monitor, 	0, approximately equal to that at the sample,
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	, since the monitor neutron absorption efficiency, ηmon, is typically low. Thus, the counts
collected, per unit frequency interval, in a time τ , can be written as (see equation (7))

I ∝ 	τ Nε(k1)
�
k1

k0
S̃(Q, ω) ∼= Mc

ηmon
Nε(k1)
�

k1

k0
S̃(Q, ω). (18)

Moreover, by taking into account the typical 1/k0 dependence of the monitor efficiency, the
above intensity reduces further to

I ∝ Mc Nε(k1)
�k1 S̃(Q, ω) = const · S̃(Q, ω) (19)

which shows how constant-monitor measurements of each energy point in the spectrum
provide, in inverse geometry, an intensity that no longer depends on the incident energy
and is, to a good approximation, directly proportional to the scattering law. This will make
the comparison with the model calculations described in section 3 straightforward, since
experimental quantities and calculations are expected to differ, besides energy resolution
broadening and other effects accounted for in the following, only by a constant factor over the
whole energy range investigated.

The hydrogen sample was maintained at a pressure of 5.88±0.04 bar at T = 296.5±0.5 K,
in a cylindrical container of inner radius rs = 8 mm, sidewall thickness 1 mm and height
hs = 43 mm. The thermodynamic conditions of the sample correspond to a molecular number
density n = 0.1431 ± 0.0005 nm−3, as obtained from equation-of-state data [32]. Such a
value differs from the ideal gas result by less than 0.35%. The material employed for the
sample container was an aluminium alloy (Al7075) whose composition was used to evaluate
the overall neutron cross-sections, namely, σcoh = 1.69 b, σinc = 0.02 b and σabs = 0.3 b at
25 meV, and the atomic number density, ncell = 59.6 nm−3, of the alloy. The sample volume
illuminated by the neutron beam (8485 mm3) was determined by the cadmium masks over
the cell, and by the rectangular diaphragm, 15 mm × 45 mm, defining the dimensions of the
incident beam.

In both the above-mentioned set-ups, and for each scattering angle, neutron spectra were
also collected for the empty container and for a rolled thin sheet (0.15 mm thick) of vanadium
placed inside the cell. The raw data from hydrogen, vanadium and the empty container are
compared in figures 4 and 5.

The vanadium runs were performed, as usual, in order to check the spectrometer energy
resolution in the set-ups adopted. Subtraction of the vanadium spectra for the background,
including the scattering from the container, and multiple scattering, along with corrections
for absorption and other effects, as outlined in the following section, provided, as expected,
a Gaussian-shaped energy distribution of the single-scattering intensity from the vanadium
sample. By means of Gaussian fits to the vanadium single-scattering intensity, shown in
figure 6 for the two final energies, we thus derived the standard deviation corresponding to
the instrument elastic energy resolution in each set-up. The dependence of the width on the
scattering angle is negligible, and the fits provide an energy resolution of 2.74 and 0.73 meV
(FWHM) at 50 and 14.68 meV, respectively.

5. Data analysis

The use of the general equation (7) or, as in the present case, equation (19), for comparison
between experiment and models of S̃(Q, ω) requires the determination of the ideal intensity
from the sample, free from absorption effects, and due to singly scattered neutrons of well-
defined incident energy. Consequently, the raw neutron data must be corrected for background,
container scattering, attenuation effects and multiple scattering. Also, instrumental resolution
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Figure 4. Raw intensities from H2 (circles) and vanadium (dots) in the container, and the empty
cell (stars), at 14.68 meV final energy and scattering angles of 2◦ (upper frame) and 7◦ (lower
frame).

broadening of the experimental quantities must be considered. Moreover, the possible presence
in the incident beam of a non-negligible fraction of neutrons characterized by an energy
differing from the nominal one should also be taken into account,at least in an approximate way.
In the following subsections we describe the procedures adopted for all the above corrections,
starting from the last one.
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Figure 5. As figure 4, but at 50 meV final energy.

5.1. Correction for incident beam energy contamination

On three-axis spectrometers, selection of the incident neutron energy is performed by means
of Bragg reflection at a crystal monochromator. Thus, other-order reflections can give, in
certain conditions, a non-negligible contribution to the energy composition of the reflected
beam. The IN3 spectrometer of ILL is in the Guide Hall, and typically the flux on a neutron
guide at relatively large energies (e.g. >80 meV) is limited. Conversely, the flux of lower-
energy neutrons is quite important, with a peak around 35 meV for the guide of IN3. As a
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Figure 6. Experimental single-scattering intensity of the vanadium sample (circles with error bars)
and Gaussian fit to the data (solid line), at 14.68 meV (upper frame) and 50 meV (lower frame)
final energy.

consequence, contamination of the beam by neutrons of energy differing from the working
one starts to have a role when the monochromator, along with the wanted reflection, can also
select neutrons with energies not too far from the above peak value. In our case, the incident
energies required for, for instance, elastic (E0 = E1) scattering were 14.68 and 50 meV in the
two sets of measurements, both employing the (111) reflection of the Cu monochromator. The
main contamination could therefore come from the neutrons reflected by the set of planes with
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Miller indices (222), i.e. from the λ/2 neutrons. At 50 meV nominal energy, λ/2 neutrons
correspond to 200 meV energy, which is well above the energy value of the peak in the flux
distribution from the guide. Conversely, at 14.68 meV, λ/2 neutrons correspond to 58.7 meV
energy, and can contribute appreciably to the incident beam. Of course, these values give only
an indication, since in inverse geometry the nominal incident energy is scanned both below and
above the one corresponding to elastic scattering. This should also help with remembering
why, in such an operation mode, a neutron filter cannot efficiently be used in the incident
beam. The main effect of the presence of higher-order neutrons in the beam is that these are
also detected by the incident beam monitor, which is used to determine the counting time for
each data point. For a correct normalization of data taken with variable E0, it is thus necessary
to correct the monitor counts in order to derive the value that would be measured in the absence
of contamination. Retaining only the contributions of λ and λ/2 neutrons, the effective monitor
counts are given by

Mc ∝ (	ληmonλ + 	λ/2ηmonλ/2)τλ+λ/2.

In the absence of λ/2 contamination, the same monitor counts would be reached in a time τλ

such that Mc ∝ 	ληmonλτλ, i.e. in a longer time. Since the neutron intensity is proportional to
the counting time, we can thus write the intensity I corr that would correspond to Mc counts of
λ neutrons only as

I corr = I meas τλ

τλ+λ/2
= I meas 	λ + 	λ/2/2

	λ

(20)

where we used the relation ηmonλ ∝ λ.
To perform the above correction we thus need to know the experimental value of the

flux due to λ and λ/2 neutrons separately, for all the nominal λ(E0) values used in the
measurements. An estimate can be obtained by means of specific transmission measurements
using the Cu monochromator and a set of identical Pyrex slabs, following the procedure
introduced in [33]. Since the transmitted intensity depends on the energy and the number
of slabs, higher-order contamination can be quantified provided that the Pyrex attenuation
coefficient, µ(λ) = nσt (λ) ≈ nσs + nσabs(λ), is known. The latter can be measured directly
by means of further transmission runs, with and without one slab, at wavelengths where
either a neutron filter after the monochromator can be used (e.g. with a graphite filter at the
two ‘magic’ wavelengths 1.53 and 2.36 Å) or the higher-order contamination is expected
to be negligible (i.e. at the lowest wavelengths on a neutron guide). By performing such
measurements we were able to estimate the different order contributions to the measured flux,
plotted in figure 7 for the two non-negligible components. Since second-order reflections from
the Cu(111) monochromator are found to contribute only below 20 meV incident energy, the
above-mentioned correction of the neutron intensities will be significant, in our case, mainly
for the 14.68 meV measurements. The ratio 	λ/2/	λ, needed for the correction described by
equation (20), is plotted as an inset of figure 7, along with a fit of the experimental results by
means of the empirical model function a(2π/λ)b, which provided a = 626 and b = −7.83,
for wavelengths measured in Å.

Figure 8 shows the effect of this correction on the raw H2 spectra at θ = 2◦, for 14.68
and 50 meV. As already observed, the correction is important only for the lower-energy
measurements. Comparable effects influence also the empty container and vanadium spectra.

5.2. Evaluation of absorption and multiple-scattering effects

The self-attenuation of the sample–container system, as well as that of the empty container, has
been calculated, as a function of the energy transfer,according to the generalization for inelastic
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Figure 7. Experimental flux components due to λ (circles) and λ/2 (stars) neutrons from the
Cu(111) monochromator, at various nominal wavelengths. It can be observed that second-order
reflections have a non-negligible role below (above) 20 meV (2.5 Å). The inset shows experimental
results (circles) for the ratio of second-to first-order neutrons contributing to the flux, and the fit of
the data (solid line) with the empirical model a(2π/λ)b .

scattering of the well-known Paalman–Pings coefficients Aα,β [34, 35], where α and β indicate,
respectively, in which element the scattering takes place and where attenuation occurs. For
instance, the scattering from the sample alone will be generally attenuated both in the sample
itself and in the container. By assuming for the moment only single-scattering events, the
sample contribution to the measured intensity can be written as I (1)

s,sc = As,sc I (1)
s , where sc

indicates that both the sample (s) and the container (c) contribute to the signal attenuation,
while I (1)

s is the sought-for corrected quantity, i.e. that related to the double-differential cross-
section of equation (7). Similar equations can be written for the scattering from the full or
empty container. It can be shown that the calculation of the Paalman–Pings coefficients reduces
to the evaluation of multidimensional integrals, over the illuminated volume of the specific
scattering element (s or c), of the neutron transmission along the incident and scattered paths.
For example, a simplified version of As,sc is

As,sc = 1

V ill
s

∫
V ill

s

dV ill
s exp[−µc(E0)Lc

inc − µc(E1)Lc
scat] exp[−µs(E0)Ls

inc − µs(E1)Ls
scat]

where we explicitly indicated the energy dependence of the attenuation coefficient µ of
the sample and container (superscripts s and c), before and after the scattering event, and
we subdivided the distances L travelled in each material into incident and scattered paths,
depending on the specific coordinates of the scattering point over the available illuminated
volume V ill

s .



7914 E Guarini et al

-4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

-20 -15 -10 -5 0 5 10
0

1

2

3

4

5

6

7
x 10

-3

Ico
rr

(E
)

[a
rb

.u
ni

ts
]

E [meV]

E1 = 14.68 meV
θ = 2°

E1 = 50 meV
θ = 2°

Figure 8. Raw data from H2 in the cell before (circles) and after (stars) correction for the second-
order contribution to the incident monitor counts, according to equation (20). The upper figure
shows how the correction visibly modifies the original data at 14.68 meV final energy, while the
lower figure confirms that such a correction is unimportant at the higher energies (stars and circles
nearly coincide).

Calculations of this kind can be efficiently performed, for any sample and container
shape, and for each data point of the experimental spectrum (i.e. for each specific triplet
E0, E1, θ , defining a point of the energy scan), by means of Monte Carlo integration. The
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energy dependence of the Paalman and Pings coefficients, usually rather weak, turned out
to be negligible, with typically less than 0.2% variations, for the hydrogen sample. Similar
calculations were, of course, performed to evaluate the absorption coefficients in the presence
of the vanadium sample.

The evaluation of multiple scattering can be addressed in a conceptually similar way,
with the difference that the scattering law must be included in the calculations. We first
note, however, that the scattering power of our dilute sample was, as expected, rather low
(∼3%). Consequently, the sample multiple-scattering contributions to the measured intensity
are comparably weak, while a more important role is played, in our conditions, by multiple-
scattering events involving the container. In any case, the rather weak overall effect of multiple
scattering in the present experiment allowed us to concentrate on the calculation of the double-
scattering intensities only, and to neglect higher-order multiple processes.

In analogy with the previous calculations, the attenuated double scattering from the sample
can, for instance, be schematized as (ss means that scattering takes place twice in the sample
only)

Iss,sc ∝ n2
∫

V ill
s

dV ill
s

∫
Vs

dVs exp[−µs(E0)Ls
inc − µc(E0)Lc

inc]

×
∫ +∞

0
dEint

exp[−µs(Eint)L int]

L2
int

d2σ

d� dE ′

∣∣∣∣
θ1

d2σ

d� dE ′′

∣∣∣∣
θ2

× exp[−µs(E1)Ls
scat − µc(E1)Lc

scat]

where the second integration over the whole sample volume, Vs, takes into account that the
second scattering point can be anywhere in the sample, independently of the incident beam
dimensions. With respect to the attenuation coefficient case, here there is also an integral
over all the possible intermediate energies of the neutron, Eint, between the first and second
scattering events, as well as the transmission term related to the path L int travelled between
the two scattering points. Finally, the intensity depends on the sample dynamic response at
both scattering points, where energy transfers are given, respectively, by E ′ = E0 − Eint and
E ′′ = Eint − E1. The specific scattering angles of the two events are also indicated.

In the case of dilute hydrogen we are particularly lucky since, unlike in the usual
situation in neutron experiments, an extremely realistic model of the sample scattering law
for the evaluation of the double-scattering intensity is provided by equations (6) and (16).
Similarly, the scattering from the container is also practically known, and can be modelled
as predominantly elastic, to a good approximation. With these ingredients, we calculated, by
Monte Carlo integration, the double scattering for each possible combination of the elements
where first and second scattering can occur (ss, sc, cs, cc). The only slight complication
arose from the extremely wide range of Eint values needed to perform with good accuracy the
intermediate integration over the energy. In fact, Eint represents the incident energy for the
second scattering event and, since it can be quite high, the corresponding calculations of d2σ

d� dE ′′ ,
through equation (16), can involve many rotational transitions. In particular, we estimated that
for Eint values up to 450 meV, non-negligible contributions to the quoted integral were possible.
Thus, our model for the double-differential cross-section was appropriately implemented for
such a high incident energy, and required the consideration of initial and final rotational levels
such that J0 = 0, . . . , 7 and J1 = 0, . . . , 10, while vibrational transitions are still frozen.

We finally give in figure 9 an example of the results, showing the calculated double-
scattering components at the nominal angle of 2◦ and 50 meV final energy. The double
scattering from the (full) container, broadened by the instrumental resolution, dominates over
other multiple processes in the quasi-elastic range, and for this reason we show in the inset
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Figure 9. Results of the Monte Carlo calculation of the double-scattering contributions from the
sample–container system, at 2◦ and 50 meV final energy. The double events in the container
(line with crosses) Icc,sc are dominant in the quasi-elastic region, while the total double scattering
involving the sample (Iss,sc + Ics,sc + Isc,sc) is an almost constant background. The inset shows
the details for Iss,sc (dots with error bars), Isc,sc (stars with error bars) and Ics,sc (circles with error
bars), compared with their sum.

a zoom of the energy dependence of the scattering from the sample and of cross-sample–
container contributions.

Given the above calculations, and the corresponding simpler evaluations, in consistent
units, of the single-scattering intensity from the sample–container system, a useful quantity is
the double-to-single-scattering ratio:

δsc = (Iss,sc + Isc,sc + Ics,sc + Icc,sc)B

(I (1)
s,sc + I (1)

c,sc)B

where with the subscript B we explicitly indicate that all calculated quantities need to be
broadened according to the instrumental resolution, in order to make them comparable with the
energy distribution of the measured spectra. Indeed, since calculations cannot take into account
the true flux and other experimental factors, i.e. calculated intensities are not in ‘experimental
units’, the ratio gives anyway correct information on the weight that the multiple scattering has
in the real measurements (of the order of 2%, globally, in our conditions). This information
can thus be used to derive, finally, the sample single-scattering intensity, which can be shown
to be related to experimental and calculated quantities by

I (1)
s ≈ 1

As,sc

[
I corr
sc

1 + δsc
− Ac,sc

Ac,c

(
I corr
c

1 + δc

)]
(21)

where I corr
sc and I corr

c correspond, respectively, to the experimental spectra, corrected for beam
contamination (see the previous section), of the sample–container system and of the empty cell,
while δc is the empty-cell analogue of δsc. The above equation holds also for the vanadium
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Figure 10. Single-scattering intensity of the hydrogen sample (dots with error bars) according to
equation (21), at 2◦ and the two final energies of the experiment. Circles represent the measured
spectra before subtraction of the container and correction for multiple scattering and attenuation
effects. The important difference between the raw and corrected data, visible at 14.68 meV (upper
frame), is mainly due to the considerable scattering from the container in such conditions.

sample, and was used, together with the corresponding calculations, to derive the spectra
already shown in figure 6. To give an idea of the overall effect of the calculated corrections
and of container subtraction, we compare, in figure 10, the raw I corr

sc and single-scattering I (1)
s

data for hydrogen at the two experimental final energies and 2◦. In the case of the 14.68 meV



7918 E Guarini et al

data, we recall that the scattering from the container has an important role at such a scattering
angle (see also figure 4, upper frame).

6. Results and conclusions

As explained in the discussion of equation (19), the resolution-free single-scattering intensities
are expected to be proportional to S̃ and, in the present case of dilute hydrogen, are proportional
in particular to S̃s, for which we described two models in section 3. It is thus straightforward
to investigate the suitability of the methods for the description of the experimental line-shapes,
since, once broadened according to the instrumental resolution, the models should reproduce
the single-scattering data within a constant factor. With this purpose, we performed fits of the
I (1)
s data by means of the simple function K (S̃calc

s )B, with K being the best-fit constant to be
determined, and (S̃calc

s )B the calculated scattering law (equations (16) or (17), and (6)), after
energy resolution broadening. The latter has of course a limited effect on the calculations,
since the hydrogen model spectra are quite broad by themselves. It is important to observe
that the above one-parameter function is far from being ‘flexible’, in the sense that it is unable
to hide even small discrepancies between the shape of the experimental spectra and that of the
calculated versions.

The comparison between data and calculations is shown in figures 11 and 12, for the various
set-ups of the experiment. In each figure we report also the specific values, KYK and KKN,
of the best-fit constant found either using the YK or the KN model. A good agreement with
the YK calculations is found in all conditions investigated, even at low final energy and at the
lower scattering angle, thus proving that such a model can be reliably employed in small-angle
experiments and satisfactorily reproduces the experimental line-shape of dilute H2. In contrast,
the KN result typically provides an underestimation of the peak intensity. Discrimination
between the two models in the present kinematic conditions thus becomes clear at the level
of the dominant rotational contributions characterizing the quasi-elastic region, where KN is
clearly less effective. Conversely, the present results do not show convincing evidence, within
the experimental uncertainties, of the expected loss of accuracy of the KN predictions in the
energy-gain region, where the incident neutron energy here becomes inferior to or comparable
with the transition energies [2, 7]. Nonetheless, the overall spectra are better accounted for by
the YK model, as confirmed also by a systematic, though limited, increase of the χ2 that we
found in passing from the YK fits to the KN ones. It is worth recognizing however that, despite
the strong approximations of the KN theory and the effects that these have on the details of
the energy distribution, the model is anyway able to roughly describe the measurements at the
level of the integrated spectra, i.e. of the differential cross-section dσ/d�.

The present experimental results, combined with the YK treatment, clearly show that
low-density H2 is more than appropriate for normalization purposes. It would be interesting
to have another reliable reference sample in order to perform a cross-check with hydrogen.
Unfortunately, at the low scattering angles investigated here, vanadium is inappropriate for
this purpose, because it is difficult to disentangle hypothetical problems in the normalization
procedure with hydrogen from those related to the spurious small-Q scattering from vanadium
mentioned in the introduction. Indeed, from our measurements on the rolled vanadium slab
and an approximate evaluation of the atoms exposed to the beam, we were able to attempt
a normalization of the vanadium data with hydrogen, and derive an experimental estimate
of σs/4π , for comparison with the tabulated value for vanadium (0.406 b sr−1). The results,
plotted in figure 13, confirm the difficulties mentioned above, since a visible difference can be
observed at the smallest scattering angle and at low energy, i.e. for the lowest Q value probed
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Figure 11. Single-scattering intensity of the hydrogen sample at 14.68 meV (circles with error
bars), compared, at both scattering angles, with the YK (solid line with error bars) and KN (dotted
line) model calculations, after resolution broadening. The factors of proportionality, KYK and
KKN, between data and calculations (see the text) are shown in each frame. The uncertainty in the
value of KYK determines the error attributed to the corresponding model line-shape.

by the experiment. This fact appears only as further evidence that experimental intensities
from vanadium at small Q typically exceed the expected isotropic value, rather than indicating
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Figure 12. As figure 11, but for 50 meV final energy.

slight inadequacies of the hydrogen YK model. On the contrary, the latter is found to provide,
for the H2 measurements performed at a given final energy, the same fit quality and, more
important, the same KYK values at both scattering angles, which is an extremely significant
result if one considers that, in our conditions, solid angle variations were absent not only within
an energy scan, but also between scans at different θ , thanks to the nearly cylindrical shape
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Figure 13. Scattering cross-section of vanadium as derived by hydrogen normalization of the
measurements on the rolled slab V sample, as a function of the elastic wavevector transfer values
probed by the experiment. The dashed line is the literature value for σs/4π of vanadium.

of our illuminated sample (see section 4 and figure 3). Thus, the YK model ensures a correct
line-shape description at all Q values, with fit results strongly supporting a high consistency
between experimental findings and theoretical modelling, while the same does not happen with
the KN results. The overall accuracy of the hydrogen method can therefore be estimated from
the relative error on the proportionality factor KYK, which turns out to range between 1.5 and
2%.

With the present fundamental test of the scattering law of dilute H2, the power of the
hydrogen calibration technique in neutron spectroscopy becomes even more evident when
the more complex case of direct geometry spectrometers with two-dimensional detection is
considered. The availability of a reference sample characterized by a broad energy spectrum
like H2, and the detailed knowledge of its scattering law for each (E0, E1, θ ) triplet, allows
in fact for an extremely accurate ‘point-by-point’ normalization of experimental intensities,
capable of including even the slightest variations in solid angle and efficiency (consider
equation (18), for fixed initial energy neutrons) from one detector cell to the other, over the
whole available area. This means, in other words, that individual normalization factors can
be assigned to the sample intensities, for each E value and for each detector element, with
unprecedented accuracy.

For completeness, we show finally in figure 14 the resolution-free S̃s(E) of dilute H2

in absolute units, calculated over the experimental energy range. An estimation of the
uncertainties could be performed by exploiting the experimental information, i.e. by assigning
error bars depending on both the experimental error in the I (1)

s data and the uncertainty in the
fitted KYK values.

This first determination of the self-dynamic cross-section of molecular hydrogen at room
temperature, carried out at the top performances of neutron spectrometry and compared with
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Figure 14. Resolution-free self-dynamic neutron cross-section of dilute hydrogen in absolute
units, as a function of energy transfer and at the two final energies of the experiment. At both
energies, the calculated constant-θ spectra for 2◦ (circles) and 7◦ (stars) are shown. Error bars were
estimated from the experimental uncertainties, including those related to the instrumental factor
KYK necessary to convert experimental intensities to double-differential cross-section data.

theoretical calculations, has thus provided important data for this fundamental system, while
opening, at the same time, new possibilities for neutron data reduction to absolute units in
inelastic scattering experiments, especially valuable at small angles, which we hope will be of
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general help with the performance and analysis of accurate neutron measurements on new and
existing instruments.
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